Zusammenfassung
Solid-state P-31 NMR spectroscopy was applied to measure the isotropic chemical shifts, chemical shift anisotropies and asymmetry parameters of three phosphorylated amino acids, O-phospho-L-serine, O-phospho-L-threonine and O-phospho-L-tyrosine. The cross-polarization buildup rates and longitudinal relaxation times of P-31 and H-1 were-determined and compared with the values measured for a ...
Zusammenfassung
Solid-state P-31 NMR spectroscopy was applied to measure the isotropic chemical shifts, chemical shift anisotropies and asymmetry parameters of three phosphorylated amino acids, O-phospho-L-serine, O-phospho-L-threonine and O-phospho-L-tyrosine. The cross-polarization buildup rates and longitudinal relaxation times of P-31 and H-1 were-determined and compared with the values measured for a triphosphate (GppCH(2)p) bound to a crystalline protein (Ras). It is shown that the phosphorylated amino acids are well-suited model compounds, e.g. for the optimization of experiments on crystalline proteins. Two-dimensional exchange experiments on O-phospho-L-tyrosine indicate the existence of an exchange between the two different conformations of the molecule. Copyright (C) 2004 John Wiley Sons, Ltd.