Zusammenfassung
The polymorphism at position 25 of the gene encoding transforming growth factor-beta1 (TGF-beta1), which changes the amino acid sequence of the signal peptide sequence (arginine to proline), is causing a variation in TGF-beta1 production. The homozygous genotype (Arg25Arg) is associated with higher TGF-beta1 production than the heterozygous (Arg25Pro) genotype. Therefore, the possible involvement ...
Zusammenfassung
The polymorphism at position 25 of the gene encoding transforming growth factor-beta1 (TGF-beta1), which changes the amino acid sequence of the signal peptide sequence (arginine to proline), is causing a variation in TGF-beta1 production. The homozygous genotype (Arg25Arg) is associated with higher TGF-beta1 production than the heterozygous (Arg25Pro) genotype. Therefore, the possible involvement of this genetic variation in theTGF-beta1 gene for induction and progression of various diseases is under close investigation. At present, several labor-intensive established assays ranging from amplification refractory mutation system (ARMS)-PCR methodologies, sequence specific oligonucleotide probing (SSOP), restriction fragment length polymorphism (RFLP) analysis, 5' nuclease assays, and specialized fingerprinting protocols are applied to analyze the polymorphism in question. We developed a novel approach for analyzing this polymorphism in a LightCycler system and determined the allele frequency distributions between patients with different degrees of hepatic fibrosis induced by chronic hepatitis C virus infection. In patients with severe hepatic fibrosis (METAVIR-score 3-4), the Pro25 allele was twice as frequent compared to patients with mild fibrosis (METAVIR-score 0-2). However, we found no association of necroinflammatory activity and genotype distribution. This suggests that the stage of hepatic fibrosis, rather than the grade (inflammation), is influenced by the presence of proline at codon 25 in patients with chronic hepatitis C. (C) 2003 Elsevier Ltd. All rights reserved.