Zusammenfassung
3,3'-Dimethoxy-2,2'-bipyrrole (1) and 4,4'-dimethoxy-2,2'-bipyrrole (2) were obtained in short sequences and good yields from N-benzyl-3-hydroxy-pyrrole-2,4-dicarboxylic acid. The key intermediate leading to 1 is an N-benzyl-3-methoxypyrrole, which is dimerized by lithiation and oxidation with NiCl2. The formation of 2 is achieved by a classical Ullmann coupling of diethyl ...
Zusammenfassung
3,3'-Dimethoxy-2,2'-bipyrrole (1) and 4,4'-dimethoxy-2,2'-bipyrrole (2) were obtained in short sequences and good yields from N-benzyl-3-hydroxy-pyrrole-2,4-dicarboxylic acid. The key intermediate leading to 1 is an N-benzyl-3-methoxypyrrole, which is dimerized by lithiation and oxidation with NiCl2. The formation of 2 is achieved by a classical Ullmann coupling of diethyl 1-benzyl-2-bromo-4-methoxypyrrole-3,5-dicarboxylate. The N-benzyl protection groups of 1 and 2 are cleaved under reducing conditions with sodium in liquid ammonia. Both isomeric bipyrroles are extremely sensitive toward air. Compound 1 has a very low oxidation potential of 0.09 V against AgCl but film formation hardly occurs. On the other hand, compound 2 with a potential of 0.35 V readily forms stable polypyrrole films with anodic waves at -0.51 and -0.35 V and a cathodic wave at -0.77 V the lowest potential ever observed for a p-doped polymer.