Kovalev, A. S. ; Sokolova, E. S. ; Mayer, A. P. ; Éckl’, C.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Low Temperature Physics |
---|
Verlag: | AMER INST PHYSICS |
---|
Ort der Veröffentlichung: | MELVILLE |
---|
Band: | 28 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 10 |
---|
Seitenbereich: | S. 780-788 |
---|
Datum: | 2002 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1063/1.1521300 | DOI |
|
---|
Stichwörter / Keywords: | ANHARMONIC LATTICES; EXOTIC SOLITONS; ACOUSTIC-WAVES; EQUATION; MODES; MEDIA; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 72733 |
---|
Zusammenfassung
The nonlinear dynamics of elastic shear waves is investigated taking into account the interaction of the shear component of the displacements with low-amplitude sagittal components. Nonlinear evolutionary equations are derived for the shear-displacement field. These equations contain additional nonlinear dispersion terms due to the interaction with displacements in the sagittal plane. The soliton ...
Zusammenfassung
The nonlinear dynamics of elastic shear waves is investigated taking into account the interaction of the shear component of the displacements with low-amplitude sagittal components. Nonlinear evolutionary equations are derived for the shear-displacement field. These equations contain additional nonlinear dispersion terms due to the interaction with displacements in the sagittal plane. The soliton solutions of the equations obtained are studied and the possibility of the existence of exotic solitons-compactons and peakons-is discussed. (C) 2002 American Institute of Physics.