Zusammenfassung
Unipolar intersubband lasers like quantum cascade laser structures might be realized not only in III-V semiconductors but also in Si/SiGe multiple layer structures since no optical transitions across the indirect band gap are involved. We report on well-defined intersubband electroluminescence emission of Si/SiGe quantum cascade structures with different active quantum wells parameters. The ...
Zusammenfassung
Unipolar intersubband lasers like quantum cascade laser structures might be realized not only in III-V semiconductors but also in Si/SiGe multiple layer structures since no optical transitions across the indirect band gap are involved. We report on well-defined intersubband electroluminescence emission of Si/SiGe quantum cascade structures with different active quantum wells parameters. The complex valence band structure and a nonradiative relaxation rate of about 400 fs were calculated by multiband k.p formalism including Si/Ge segregation effects. The observed spectral shift of the electroluminescence peak from 146 to 159 meV is described well by quantum confinement of the two lowest heavy hole subbands. The electroluminescence observed reveals transverse magnetic polarization, a spectral line shape that changes with the direction of the current, and low-energy line broadening with an increase in temperature and current. All these features are described well by the k.p model calculation. (C) 2002 American Institute of Physics.