Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Titel eines Journals oder einer Zeitschrift: | Shock | ||||
Verlag: | BIOMEDICAL PRESS | ||||
Ort der Veröffentlichung: | AUGUSTA | ||||
Band: | 13 | ||||
Nummer des Zeitschriftenheftes oder des Kapitels: | 3 | ||||
Seitenbereich: | S. 190-196 | ||||
Datum: | 2000 | ||||
Institutionen: | Medizin > Lehrstuhl für Anästhesiologie Medizin > Lehrstuhl für Chirurgie | ||||
Identifikationsnummer: |
| ||||
Stichwörter / Keywords: | CONVERTING ENZYME-INHIBITION; RAT SKELETAL-MUSCLE; ENDOTHELIAL-CELLS; ISCHEMIA-REPERFUSION; TEMPORAL CORRELATION; NITRIC-OXIDE; ANGIOTENSIN; ISCHEMIA/REPERFUSION; MECHANISMS; ENALAPRIL; intravital microscopy; enalapril; losartan; adhesion molecules; ischemia-reperfusion injury | ||||
Dewey-Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Ja | ||||
Dokumenten-ID: | 74414 |
Zusammenfassung
There is recent evidence that angiotensin-converting enzyme (ACE) inhibition reduces postischemic injury and angiotensin II receptor inhibition may have similar effects. We therefore further characterized the role of ACE- vs. AT1-receptor inhibition on cell injury and temporal association of leukocyte endothelial interaction in response to ischemia-reperfusion. A combined in vivo and in vitro ...
Zusammenfassung
There is recent evidence that angiotensin-converting enzyme (ACE) inhibition reduces postischemic injury and angiotensin II receptor inhibition may have similar effects. We therefore further characterized the role of ACE- vs. AT1-receptor inhibition on cell injury and temporal association of leukocyte endothelial interaction in response to ischemia-reperfusion. A combined in vivo and in vitro study comparing the ACE inhibitor enalapril and the AT1-receptor antagonist losartan was performed. The extent and temporal correlation of cellular damage (propidium-iodide staining), microvascular perfusion failure and leukocyte-endothelial interaction (leukocyte adherence) were investigated by means of intravital microscopy, after the application of hemodynamically ineffective doses of enalapril and losartan (5 mg/kg). A hamster dorsal skinfold model with a 4-h tourniquet ischemia was used. In vitro, the effect of enalapril and losartan on polymorphonuclear cell (PMN) adherence, as well as adhesion molecule expression (ICAM-1, VCAM-1), on hypoxia- or IL-1 beta-stimulated endothelial cells (HUVEC) was assessed using a PMN-adhesion assay and flow cytometry, respectively. Ischemia-reperfusion responses revealed a biphasic pattern, comprised of an early phase (30 min) of acute cellular damage and microvascular perfusion failure, followed by a late increase (240 min) in leukocyte adherence in vivo. Enalapril significantly reduced early cellular damage, microvascular perfusion failure, and leukocyte adherence in response to ischemia-reperfusion. Conversely AT1 receptor inhibition with losartan proved to be ineffective at attenuating postischemic microcirculatory disorders (leukocyte-endothelial interactions, microvascular perfusion failure) and aggravated cellular injury. In vitro, enalapril reduced PMN adherence and ICAM-1 and VCAM-1 expression, while losartan was ineffective in the same respect. Following ischemia-reperfusion injury; ACE- versus AT1-receptor inhibition induce differential effects concerning the extent and temporal association of cell injury and leukocyte-endothelial interaction. The use of enalapril combines the beneficial effects of preventing cell and vascular injury immediately after reperfusion, with a delayed inhibition of the inflammatory response. Since the AT1-receptor inhibitor losartan did not mimic effects obtained with ACE inhibition, it is conceivable that the responses in ischemia-reperfusion are mediated by a non-angiotensin II-AT1 receptor-dependent mechanism.
Metadaten zuletzt geändert: 19 Dez 2024 15:59