Zusammenfassung
Optimal results in biomaterial testing and tissue engineering under in vitro conditions can only be expected when the tissue generated resembles the original tissue as closely as possible. However, most of the presently used stagnant cell culture models do not produce the necessary degree of cellular differentiation, since important morphological, physiological, and biochemical characteristics ...
Zusammenfassung
Optimal results in biomaterial testing and tissue engineering under in vitro conditions can only be expected when the tissue generated resembles the original tissue as closely as possible. However, most of the presently used stagnant cell culture models do not produce the necessary degree of cellular differentiation, since important morphological, physiological, and biochemical characteristics disappear. while atypical features arise. To reach a high degree of cellular differentiation and to optimize the cellular environment, an advanced culture technology allowing the regulation of differentiation on different cellular levels was developed. By the use of tissue carriers, a variety of biomaterials or individually selected scaffolds could be tested for optimal tissue development. The tissue carriers are to be placed in perfusion culture containers, which are constantly supplied with fresh medium to avoid an accumulation of harmful metabolic products. The perfusion of medium creates a constant microenvironment with serum-containing or serum-free media. By this technique, tissues could be used for biomaterial or scaffold testing either in a proliferative or in a postmitotic phase, as is observed during natural development. The present paper summarizes technical developments, physiological parameters, cell biological reactions, and theoretical considerations for an optimal tissue development in the field of perfusion culture.