Go to content
UR Home

Determinants of ascending aortic morphology: Cross-sectional deep learning-based analysis on 25,073 non-contrast-enhanced NAKO MRI studies

DOI to cite this document:
10.5283/epub.76604
Fay, Louisa ; Hepp, Tobias ; Winkelmann, Moritz T. ; Peters, Annette ; Heier, Margit ; Niendorf, Thoralf ; Pischon, Tobias ; Endemann, Beate ; Schulz-Menger, Jeanette ; Krist, Lilian ; Schulze, Matthias B. ; Mikolajczyk, Rafael ; Wienke, Andreas ; Obi, Nadia ; Silenou, Bernard C. ; Lange, Berit ; Kauczor, Hans-Ulrich ; Lieb, Wolfgang ; Baurecht, Hansjörg ; Leitzmann, Michael F. ; Trares, Kira ; Brenner, Hermann ; Michels, Karin B. ; Jaskulski, Stefanie ; Völzke, Henry ; Nikolaou, Konstantin ; Schlett, Christopher L. ; Bamberg, Fabian ; Lescan, Mario ; Yang, Bin ; Küstner, Thomas ; Gatidis, Sergios
[img]PDF - Published Version
(1MB) - Repository staff only
Date of publication of this fulltext: 30 Apr 2025 10:19



Abstract

Understanding determinants of thoracic aortic morphology is crucial for precise diagnostics and therapeutic approaches. This study aimed to automatically characterize ascending aortic morphology based on 3D non-contrast-enhanced magnetic resonance angiography (NC-MRA) data from the epidemiological cross-sectional German National Cohort (NAKO) and to investigate possible determinants of mid-ascending aortic diameter (mid-AAoD).


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons