Startseite UR

Toward Foundation Models in Radiology? Quantitative Assessment of GPT-4V’s Multimodal and Multianatomic Region Capabilities

URN zum Zitieren dieses Dokuments:
urn:nbn:de:bvb:355-epub-767898
DOI zum Zitieren dieses Dokuments:
10.5283/epub.76789
Strotzer, Quirin D. ; Nieberle, Felix ; Kupke, Laura S. ; Napodano, Gerardo ; Muertz, Anna Katharina ; Meiler, Stefanie ; Einspieler, Ingo ; Rennert, Janine ; Strotzer, Michael ; Wiesinger, Isabel ; Wendl, Christina ; Stroszczynski, Christian ; Hamer, Okka W. ; Schicho, Andreas
[img]Lizenz: Creative Commons Namensnennung 4.0 International
PDF - Veröffentlichte Version
(1MB)
Veröffentlichungsdatum dieses Volltextes: 30 Mai 2025 14:05



Zusammenfassung

Background Large language models have already demonstrated potential in medical text processing. GPT-4V, a large vision-language model from OpenAI, has shown potential for medical imaging, yet a quantitative analysis is lacking. Purpose To quantitatively assess the performance of GPT-4V in interpreting radiologic images using unseen data. Materials and Methods This retrospective study ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner