| PDF arxiv (23MB) |
- URN zum Zitieren dieses Dokuments:
- urn:nbn:de:bvb:355-epub-779133
- DOI zum Zitieren dieses Dokuments:
- 10.5283/epub.77913
Zusammenfassung
We introduce a machine learning framework that efficiently predicts large-scale proximity-induced magnetism in van der Waals heterostructures, overcoming the high computational cost of density functional theory (DFT). We apply it to graphene/Cr2Ge2Te6, which exhibits a previously unrecognized dichotomy. Unlike the spin polarization at the Fermi level, which follows the pseudospin, the ...

Nur für Besitzer und Autoren: Kontrollseite des Eintrags

Downloadstatistik