Go to content
UR Home

Optimal block-tridiagonalization of matrices for coherent charge transport

Wimmer, Michael and Richter, Klaus (2009) Optimal block-tridiagonalization of matrices for coherent charge transport. Journal of Computational Physics 228 (23), pp. 8548-8565.

[img]PDF - Published Version
Download (1MB) - Repository staff only
[img]
Preview
PDF - Submitted Version
arXiv PDF (17.06.2008)
Download (1MB)
Date of publication of this fulltext: 05 Aug 2009 13:57

at publisher (via DOI)

at arXiv

Other URL: http://dx.doi.org/10.1016/j.jcp.2009.08.001, http://arxiv.org/abs/0806.2739v1


Abstract

Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms requires the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered ...

plus


Export bibliographical data



Item type:Article
Date:10 December 2009
Institutions:Physics > Institute of Theroretical Physics > Chair Professor Richter > Group Klaus Richter
Projects:Graduiertenkolleg Nichtlinearität und Nichtgleichgewicht, SFB 689: Spinphänomene in reduzierten Dimensionen
Identification Number:
ValueType
10.1016/j.jcp.2009.08.001DOI
0806.2739arXiv ID
Classification:
NotationType
72.10.Bg; 02.70.−c; 02.10.OxPACS
Keywords:Coherent quantum transport; Recursive Green’s function algorithm; Block-tridiagonal matrices; Matrix reordering; Graph theory
Dewey Decimal Classification:500 Science > 530 Physics
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:7828
Owner only: item control page

Downloads

Downloads per month over past year

  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons