Zusammenfassung
Co2MnGe films of 30 and 50 nm in thickness were grown by RF-sputtering. Their magnetic anisotropies, dynamic properties and the different excited spin wave modes have been studied using conventional ferromagnetic resonance (FMR) and Microstrip line FMR (MS-FMR). From the in-plane and the out-of-plane resonance field values, the effective magnetization (4πMeff) and the g-factor are deduced. These ...
Zusammenfassung
Co2MnGe films of 30 and 50 nm in thickness were grown by RF-sputtering. Their magnetic anisotropies, dynamic properties and the different excited spin wave modes have been studied using conventional ferromagnetic resonance (FMR) and Microstrip line FMR (MS-FMR). From the in-plane and the out-of-plane resonance field values, the effective magnetization (4πMeff) and the g-factor are deduced. These values are then used to fit the in-plane angular-dependence of the uniform precession mode and the field-dependence of the resonance frequency of the uniform mode and the first perpendicular standing spin wave to determine the in-plane uniaxial, the four-fold anisotropy fields, the exchange stiffness constant and the magnetization at saturation. The samples exhibit a clear predominant four-fold magnetic anisotropy besides a smaller uniaxial anisotropy. This uniaxial anisotropy is most probably induced by the growth conditions.