Zusammenfassung
Genomes of prokaryotes harbor genomic islands (GIs), which are frequently acquired via horizontal gene transfer (HGT). Here I present an analysis of GIs with respect to gene-encoded functions. GIs were identified by statistical analysis of codon usage and clustering. Genes classified as putatively alien (pA) or putatively native (pN) were categorized according to the COG database. Among pA and pN ...
Zusammenfassung
Genomes of prokaryotes harbor genomic islands (GIs), which are frequently acquired via horizontal gene transfer (HGT). Here I present an analysis of GIs with respect to gene-encoded functions. GIs were identified by statistical analysis of codon usage and clustering. Genes classified as putatively alien (pA) or putatively native (pN) were categorized according to the COG database. Among pA and pN genes, the distribution of COG functions and classes were studied for different groupings of prokaryotes. Groups were formed according to taxonomical relation or habitats. In all groups, genes related to class L (replication, recombination, and repair) were statistically significantly overrepresented in GIs. GIs of bacteria and archaea showed a distinct pattern of preferences. In archeal GIs, genes belonging to COG class M (cell wall/membrane/envelope biogenesis) or Q (secondary metabolites biosynthesis, transport, and catabolism) were more frequent. In bacterial GIs, genes of classes U (intracellular trafficking, secretion, and vesicular transport), N (cell motility), and V (defense mechanisms) were predominant. Underrepresentation was strongest for genes belonging to class J (translation, ribosomal structure, and biogenesis). Among single COG functions overrepresented in GIs were transferases and transporters. In both superkingdoms, HGT enhances genomic content by meeting demands that are independent of the studied habitats. These findings are in agreement with the complexity theory, which predicts the preferential import of operational genes. However, only specific subsets of operational genes were enriched in GIs. Modification of the cell envelope, cell motility, secretion, and protection of cellular DNA are major issues in HGT.