Go to content
UR Home

Stability analysis of geometric evolution equations with triple lines
and boundary contact

Depner, Daniel (2010) Stability analysis of geometric evolution equations with triple lines
and boundary contact.
PhD, Universität Regensburg.

License: Publishing license for publications including print on demand
Download (1MB)
Date of publication of this fulltext: 10 Sep 2010 12:46

Abstract (English)

In this doctoral thesis we investigate different area-minimizing geometric evolution equations for evolving hypersurfaces, which lie in a fixed domain and touch its boundary at a right angle. Additionally we consider situations where three evolving hypersurfaces meet each other at a triple line under prescribed angle conditions. We introduce appropriate parametrizations to formulate the ...


Translation of the abstract (German)

In dieser Dissertation untersuchen wir verschiedene oberflächen-minimierende geometrische Evolutionsgleichungen für evolvierende Hyperflächen, die in einem festen Gebiet liegen und am Rand in einem rechten Winkel auftreffen. Zusätzlich betrachten wir Situationen, in denen sich drei evolvierende Hyperflächen in einer Tripelline in dem festen Gebiet unter vorgegebenen Winkeln treffen. Wir führen ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:10 September 2010
Referee:Prof. Dr. Harald Garcke and Prof. Dr. Klaus Deckelnick
Date of exam:5 July 2010
Institutions:Mathematics > Prof. Dr. Harald Garcke
Interdisciplinary Subject Network:Not selected
Keywords:linearized stability analysis, geometric evolution equations, mean curvature flow, surface diffusion, triple lines
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:16047
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons