Startseite UR

Short communication: Use of genomic and metabolic information as well as milk performance records for prediction of subclinical ketosis risk via artificial neural networks

Ehret, A. ; Hochstuhl, D. ; Krattenmacher, N. ; Tetens, J. ; Klein, M. S. ; Gronwald, Wolfram ; Thaller, G.



Zusammenfassung

Subclinical ketosis is one of the most prevalent metabolic disorders in high-producing dairy cows during early lactation. This renders its early detection and prevention important for both economical and animal-welfare reasons. Construction of reliable predictive models is challenging, because traits like ketosis are commonly affected by multiple factors. In this context, machine learning methods ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner