Abstract
The force between two atoms depends not only on their chemical species and distance, but also on the configuration of their chemical bonds to other atoms. This strongly affects atomic force spectroscopy, in which the force between the tip of an atomic force microscope and a sample is measured as a function of distance. We show that the short-range forces between tip and sample atoms depend ...
Abstract
The force between two atoms depends not only on their chemical species and distance, but also on the configuration of their chemical bonds to other atoms. This strongly affects atomic force spectroscopy, in which the force between the tip of an atomic force microscope and a sample is measured as a function of distance. We show that the short-range forces between tip and sample atoms depend strongly on the configuration of the tip, to the point of preventing atom identification with a poorly defined tip. Our solution is to control the tip apex before using it for spectroscopy. We demonstrate a method by which a CO molecule on Cu can be used to characterize the tip. In combination with gentle pokes, this can be used to engineer a specific tip apex. This CO Front atom Identification (COFI) method allows us to use a well-defined tip to conduct force spectroscopy.