Go to content
UR Home

Arithmetic Divisors on Products of Curves over non-Archimedean Fields

Vollmer, Philipp (2016) Arithmetic Divisors on Products of Curves over non-Archimedean Fields. PhD, Universität Regensburg.

License: Publishing license for publications including print on demand
Download (855kB)
Date of publication of this fulltext: 27 Jul 2016 07:27

Abstract (English)

In this thesis we investigate posivitiy properties of arithmetic divisors induced by real-valued functions on a skeleton of the self product of a non-Archimedean curve. The main result is that if the functions have sufficiently good differentiability properties the arithmetic divisors are DSP i.e., differences of semipositive arithmetic divisors. Further topics include explicit computations of ...


Translation of the abstract (German)

In dieser Arbeit beschäftigen wir uns mit Positivitätseigenschaften von arithmetischen Divisoren, die durch reellwertige Funktionen auf einem Skelett auf dem Selbstprodukt einer nicht-archimedischen Kurve induziert werden. Das Hauptresultat ist, daß, wenn die Funktionen hinreichend oft differenzierbar sind, die arithmetischen Divisoren dann bereits DSP sind, d.h. Differenzen von semipositiven ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:27 July 2016
Referee:Prof. Dr. Klaus Künnemann
Date of exam:8 July 2016
Institutions:Mathematics > Prof. Dr. Klaus Künnemann
Mathematics > Prof. Dr. Walter Gubler
Keywords:Arithmetic divisors, DSP, local heights, Chambert-Loir measures, Berkovich spaces, Skeleta of Berkovich spaces
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:34146
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons