Go to content
UR Home

Quantum States on the Algebra of Dirac Fields: A functional analytic approach

Murro, Simone (2017) Quantum States on the Algebra of Dirac Fields: A functional analytic approach. PhD, Universität Regensburg.

License: Publishing license for publications including print on demand
Download (604kB)
Date of publication of this fulltext: 18 May 2017 05:01

Abstract (English)

The aim of this thesis is to use functional analytic techniques to construct quasifree states on the algebras of observables for massive Dirac fields. We begin by considering the Rindler spacetime. In the two-dimensional setting, the resulting quasifree states coincide with the Fulling-Rindler vacuum and the Unruh state. On the other hand, in the four-dimensional case new quantum states arise. In ...


Translation of the abstract (German)

Das Ziel dieser Doktorarbeit ist die Verwendung funktionlanlytischer Techniken um quasifreie Zustände auf der Algebra von Obervablen für Dirac Felder mit Masse. Anfangs betrachten wir die Rindler Raum-Zeit. In einem zweidimensionalen Setting sind die quasifreien Zustände gleich dem Fulling-Rindler Vakuum und dem Unruh-Zustand. Andererseits gibt es im vierdimensionalen Fall weitere ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:18 May 2017
Referee:Prof. Dr. Felix Finster and Prof. Dr. Claudio Dappiaggi
Date of exam:24 April 2017
Institutions:Mathematics > Prof. Dr. Felix Finster
Keywords:Algebraic quantum field theory, fermionic signature operator, quantum field theory on curved spacetimes, mathematical physics, Dirac operator
Dewey Decimal Classification:500 Science > 510 Mathematics
500 Science > 530 Physics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:35661
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons