Zusammenfassung
Recommender systems (RS) are useful tools for filtering and sorting items and information for users. There is a wide diversity of approaches that help creating personalized recommendations. Context-aware recommender systems (CARS) are a kind of RS which provide adaptation capabilities to the user's environment, e.g., by sensing data through wearable devices or other biomedical sensors. In ...
Zusammenfassung
Recommender systems (RS) are useful tools for filtering and sorting items and information for users. There is a wide diversity of approaches that help creating personalized recommendations. Context-aware recommender systems (CARS) are a kind of RS which provide adaptation capabilities to the user's environment, e.g., by sensing data through wearable devices or other biomedical sensors. In healthcare and wellbeing, CARS can support health promotion and health education, considering that each individual requires tailored intervention programs. Our research aims at proposing a context-aware mobile recommender system for the promotion of healthy habits. The system is adapted to the user's needs, his/her health information, interests, time, location and lifestyles. In this paper, the CARS computational architecture and the user and context models of health promotion are presented, which were used to implement and test a prototype recommender system.