Go to content
UR Home

AGeNNT: annotation of enzyme families by means of refined neighborhood networks

Kandlinger, Florian, Plach, Maximilian G. and Merkl, Rainer (2017) AGeNNT: annotation of enzyme families by means of refined neighborhood networks. BMC Bioinformatics 18 (1), pp. 1-13.

[img]
Preview
License: Creative Commons Attribution 4.0
PDF - Published Version
Download (1MB)
Date of publication of this fulltext: 30 Jan 2018 09:01

at publisher (via DOI)

Other URL: http://doi.org/10.1186/s12859-017-1689-6, https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1689-6

Dieser Artikel ist in einer Zeitschrift aus dem Directory of Open Access (DOAJ) publiziert.


Abstract

Background: Large enzyme families may contain functionally diverse members that give rise to clusters in a sequence similarity network (SSN). In prokaryotes, the genome neighborhood of a gene-product is indicative of its function and thus, a genome neighborhood network (GNN) deduced for an SSN provides strong clues to the specific function of enzymes constituting the different clusters. The ...

plus


Export bibliographical data



Item type:Article
Date:25 May 2017
Institutions:Biology, Preclinical Medicine > Institut für Biophysik und physikalische Biochemie > Prof. Dr. Rainer Merkl
Projects:Open Access Publizieren (DFG)
Identification Number:
ValueType
10.1186/s12859-017-1689-6DOI
Keywords:SEQUENCE SIMILARITY NETWORKS; PROKARYOTIC GENOMES; METABOLIC PATHWAYS; ESCHERICHIA-COLI; WEB TOOL; BIOSYNTHESIS; DATABASE; CLASSIFICATION; VISUALIZATION; SPECIFICITY; Sequence similarity network; SSN; Genome neighborhood network; GNN; Genome content; Enzyme function; Homology-free annotation
Dewey Decimal Classification:500 Science > 530 Physics
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:36657
Owner only: item control page

Downloads

Downloads per month over past year

  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons