Barthel, Tobias ; Stapleton, Nathaniel
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Geometry & Topology |
---|
Verlag: | GEOMETRY & TOPOLOGY PUBLICATIONS |
---|
Ort der Veröffentlichung: | COVENTRY |
---|
Band: | 21 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 385-440 |
---|
Datum: | 2017 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.2140/gt.2017.21.385 | DOI |
|
---|
Stichwörter / Keywords: | MORAVA E-THEORY; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 38491 |
---|
Zusammenfassung
We compute the total power operation for the E-Morava E-theory of any finite group up to torsion. Our formula is stated in terms of the GL(n)(Q(p))-action on the Drinfel'd ring of full level structures on the formal group associated to E-theory. It can be specialized to give explicit descriptions of many classical operations. Moreover, we show that the character map of Hopkins, Kuhn and Ravenel ...
Zusammenfassung
We compute the total power operation for the E-Morava E-theory of any finite group up to torsion. Our formula is stated in terms of the GL(n)(Q(p))-action on the Drinfel'd ring of full level structures on the formal group associated to E-theory. It can be specialized to give explicit descriptions of many classical operations. Moreover, we show that the character map of Hopkins, Kuhn and Ravenel from E-theory to GL(n) (Z(p))-invariant generalized class functions is a natural transformation of global power functors on finite groups.