Prasma, Matan ; Schlank, Tomer M.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Topology and its Applications |
---|
Verlag: | ELSEVIER SCIENCE BV |
---|
Ort der Veröffentlichung: | AMSTERDAM |
---|
Band: | 222 |
---|
Seitenbereich: | S. 121-138 |
---|
Datum: | 2017 |
---|
Institutionen: | Mathematik > Prof. Dr. Alexander Schmidt |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.topol.2017.03.004 | DOI |
|
---|
Stichwörter / Keywords: | ; infinity-group; Sylow subgroup; k-invariant; infinity-category |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 39000 |
---|
Zusammenfassung
Viewing Kan complexes as infinity-groupoids implies that pointed and connected Kan complexes are to be viewed as infinity-groups. A fundamental question is then: to what extent can one "do group theory" with these objects? In this paper we develop a notion of a finite infinity-group: an infinity-group whose homotopy groups are all finite. We prove a homotopical analogue of Sylow theorems for ...
Zusammenfassung
Viewing Kan complexes as infinity-groupoids implies that pointed and connected Kan complexes are to be viewed as infinity-groups. A fundamental question is then: to what extent can one "do group theory" with these objects? In this paper we develop a notion of a finite infinity-group: an infinity-group whose homotopy groups are all finite. We prove a homotopical analogue of Sylow theorems for finite infinity-groups. This theorem has two corollaries: the first is a homotopical analogue of Burnside's fixed point lemma for p-groups and the second is a "group-theoretic" characterisation of finite nilpotent spaces. (C) 2017 Elsevier B.V. All rights reserved.