Zusammenfassung
Not only the Dirac operator, but also the spinor bundle of a pseudo-Riemannian manifold depends on the underlying metric. This leads to technical difficulties in the study of problems where many metrics are involved, for instance in variational theory. We construct a natural finite dimensional bundle, from which all the metric spinor bundles can be recovered including their extra structure. In ...
Zusammenfassung
Not only the Dirac operator, but also the spinor bundle of a pseudo-Riemannian manifold depends on the underlying metric. This leads to technical difficulties in the study of problems where many metrics are involved, for instance in variational theory. We construct a natural finite dimensional bundle, from which all the metric spinor bundles can be recovered including their extra structure. In the Lorentzian case, we also give some applications to Einstein-Dirac-Maxwell theory as a variational theory and show how to coherently define a maximal Cauchy development for this theory.