Raptis, George ; Steimle, Wolfgang
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Topology |
|---|
| Verlag: | Wiley |
|---|
| Ort der Veröffentlichung: | HOBOKEN |
|---|
| Band: | 10 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
|---|
| Seitenbereich: | S. 700-719 |
|---|
| Datum: | 2017 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Ulrich Bunke |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1112/topo.12019 | DOI |
|
|---|
| Stichwörter / Keywords: | ALGEBRAIC K-THEORY; MAP; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 39244 |
|---|
Zusammenfassung
We define parametrized cobordism categories and study their formal properties as bivariant theories. Bivariant transformations to a strongly excisive bivariant theory give rise to characteristic classes of smooth bundles with strong additivity properties. In the case of cobordisms between manifolds with boundary, we prove that such a bivariant transformation is uniquely determined by its value at ...
Zusammenfassung
We define parametrized cobordism categories and study their formal properties as bivariant theories. Bivariant transformations to a strongly excisive bivariant theory give rise to characteristic classes of smooth bundles with strong additivity properties. In the case of cobordisms between manifolds with boundary, we prove that such a bivariant transformation is uniquely determined by its value at the universal disk bundle. This description of bivariant transformations yields a short proof of the Dwyer-Weiss-Williams family index theorem for the parametrized A-theory Euler characteristic of a smooth bundle.