Raptis, George ; Steimle, Wolfgang
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Topology |
---|
Verlag: | Wiley |
---|
Ort der Veröffentlichung: | HOBOKEN |
---|
Band: | 10 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
---|
Seitenbereich: | S. 700-719 |
---|
Datum: | 2017 |
---|
Institutionen: | Mathematik > Prof. Dr. Ulrich Bunke |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1112/topo.12019 | DOI |
|
---|
Stichwörter / Keywords: | ALGEBRAIC K-THEORY; MAP; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 39244 |
---|
Zusammenfassung
We define parametrized cobordism categories and study their formal properties as bivariant theories. Bivariant transformations to a strongly excisive bivariant theory give rise to characteristic classes of smooth bundles with strong additivity properties. In the case of cobordisms between manifolds with boundary, we prove that such a bivariant transformation is uniquely determined by its value at ...
Zusammenfassung
We define parametrized cobordism categories and study their formal properties as bivariant theories. Bivariant transformations to a strongly excisive bivariant theory give rise to characteristic classes of smooth bundles with strong additivity properties. In the case of cobordisms between manifolds with boundary, we prove that such a bivariant transformation is uniquely determined by its value at the universal disk bundle. This description of bivariant transformations yields a short proof of the Dwyer-Weiss-Williams family index theorem for the parametrized A-theory Euler characteristic of a smooth bundle.