Bunke, Ulrich ; Nikolaus, Thomas ; Völkl, Michael
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Homotopy and Related Structures |
|---|
| Verlag: | SPRINGER HEIDELBERG |
|---|
| Ort der Veröffentlichung: | HEIDELBERG |
|---|
| Band: | 11 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
|---|
| Seitenbereich: | S. 1-66 |
|---|
| Datum: | 2016 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Ulrich Bunke |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1007/s40062-014-0092-5 | DOI |
|
|---|
| Stichwörter / Keywords: | ; Differential cohomology; Sheaves on manifolds; Stable infinity categories |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 41879 |
|---|
Zusammenfassung
We show that every sheaf on the site of smooth manifolds with values in a stable (infinity, 1)-category (like spectra or chain complexes) gives rise to a "differential cohomology diagram" and a homotopy formula, which are common features of all classical examples of differential cohomology theories. These structures are naturally derived from a canonical decomposition of a sheaf into a homotopy ...
Zusammenfassung
We show that every sheaf on the site of smooth manifolds with values in a stable (infinity, 1)-category (like spectra or chain complexes) gives rise to a "differential cohomology diagram" and a homotopy formula, which are common features of all classical examples of differential cohomology theories. These structures are naturally derived from a canonical decomposition of a sheaf into a homotopy invariant part and a piece which has a trivial evaluation on a point. In the classical examples the latter is the contribution of differential forms. This decomposition suggests a natural scheme to analyse new sheaves by determining these pieces and the gluing data. We perform this analysis for a variety of classical and not so classical examples.