Zusammenfassung
Two dimensional copper oxides obtained on Cu(111) by air-enriched argon sputtering plus annealing have been measured at room temperature by means of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. Depending on the oxygen content different oxide frameworks and diverse stoichiometric metal/oxide interfaces exist. In particular, we ...
Zusammenfassung
Two dimensional copper oxides obtained on Cu(111) by air-enriched argon sputtering plus annealing have been measured at room temperature by means of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. Depending on the oxygen content different oxide frameworks and diverse stoichiometric metal/oxide interfaces exist. In particular, we report on a novel open honeycomb structure with a large unit cell which is modeled as a two dimensional network made out of Cu3O units. This lattice coexists with other oxide structures richer in oxygen and is suggested to develop towards these denser phases by oxygen incorporation.