Abstract
The availability of linoleic acid (LA; C18:2(Delta 9,12)) is pivotal for animals. While vertebrates depend on a nutritional supply, some invertebrates, including the parasitic wasp Nasonia vitripennis, are able to synthesize LA from oleic acid (OA; C18:1(Delta 9)). This raises the question as to whether these animals nevertheless benefit from the additional uptake of LA with the diet. LA plays an ...
Abstract
The availability of linoleic acid (LA; C18:2(Delta 9,12)) is pivotal for animals. While vertebrates depend on a nutritional supply, some invertebrates, including the parasitic wasp Nasonia vitripennis, are able to synthesize LA from oleic acid (OA; C18:1(Delta 9)). This raises the question as to whether these animals nevertheless benefit from the additional uptake of LA with the diet. LA plays an important role in the sexual communication of N. vitripennis because males use it as a precursor for the synthesis of an abdominal sex pheromone attracting virgin females. We reared hosts of N. vitripennis that were fed diets enriched in the availability of stearic acid (SA: C18:0), OA or LA. N. vitripennis males developing on the different host types clearly differed in both the fatty acid composition of their body fat and sex pheromone titres. Males from LA-enriched hosts had an almost fourfold higher proportion of LA and produced significantly more sex pheromone than males from SA (2.2-fold) and OA (1.4-fold) enriched hosts, respectively. Our study demonstrates that animals being able to synthesize important nutrients de novo may still benefit from an additional supply with their diet.