Kerz, Moritz ; Saito, Shuji
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Duke Mathematical Journal |
---|
Verlag: | DUKE UNIV PRESS |
---|
Ort der Veröffentlichung: | DURHAM |
---|
Band: | 165 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 15 |
---|
Seitenbereich: | S. 2811-2897 |
---|
Datum: | 2016 |
---|
Institutionen: | Mathematik > Prof. Dr. Moritz Kerz |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1215/00127094-3644902 | DOI |
|
---|
Stichwörter / Keywords: | SINGULAR HOMOLOGY; ZERO-CYCLES; VARIETIES; SCHEMES; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 42910 |
---|
Zusammenfassung
One of the main results of this article is a proof of the rank-one case of an existence conjecture on lisse (Q) over bar (l)-sheaves on a smooth variety U over a finite field due to Deligne and Drinfeld. The problem is translated into the language of higher-dimensional class field theory over finite fields, which describes the abelian fundamental group of U by Chow groups of 0-cycles with moduli. ...
Zusammenfassung
One of the main results of this article is a proof of the rank-one case of an existence conjecture on lisse (Q) over bar (l)-sheaves on a smooth variety U over a finite field due to Deligne and Drinfeld. The problem is translated into the language of higher-dimensional class field theory over finite fields, which describes the abelian fundamental group of U by Chow groups of 0-cycles with moduli. A key ingredient is the construction of a cycle-theoretic avatar of a refined Artin conductor in ramification theory originally studied by Kazuya Kato.