Kerz, Moritz ; Saito, Shuji
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Duke Mathematical Journal |
|---|
| Verlag: | DUKE UNIV PRESS |
|---|
| Ort der Veröffentlichung: | DURHAM |
|---|
| Band: | 165 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 15 |
|---|
| Seitenbereich: | S. 2811-2897 |
|---|
| Datum: | 2016 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Moritz Kerz |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1215/00127094-3644902 | DOI |
|
|---|
| Stichwörter / Keywords: | SINGULAR HOMOLOGY; ZERO-CYCLES; VARIETIES; SCHEMES; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 42910 |
|---|
Zusammenfassung
One of the main results of this article is a proof of the rank-one case of an existence conjecture on lisse (Q) over bar (l)-sheaves on a smooth variety U over a finite field due to Deligne and Drinfeld. The problem is translated into the language of higher-dimensional class field theory over finite fields, which describes the abelian fundamental group of U by Chow groups of 0-cycles with moduli. ...
Zusammenfassung
One of the main results of this article is a proof of the rank-one case of an existence conjecture on lisse (Q) over bar (l)-sheaves on a smooth variety U over a finite field due to Deligne and Drinfeld. The problem is translated into the language of higher-dimensional class field theory over finite fields, which describes the abelian fundamental group of U by Chow groups of 0-cycles with moduli. A key ingredient is the construction of a cycle-theoretic avatar of a refined Artin conductor in ramification theory originally studied by Kazuya Kato.