Item type: | Article | ||||
---|---|---|---|---|---|
Journal or Publication Title: | Physiology & Behavior | ||||
Publisher: | Elsevier | ||||
Place of Publication: | OXFORD | ||||
Volume: | 165 | ||||
Page Range: | pp. 383-391 | ||||
Date: | October 2016 | ||||
Institutions: | Chemistry and Pharmacy > Institute of Pharmacy > Pharmaceutical/Medicinal Chemistry I (Prof. Elz) | ||||
Identification Number: |
| ||||
Keywords: | Acetylcholinesterase; Histamine H-3 receptor; Dual-acting ligand; Learning; Memory; Passive avoidance paradigm; Dizocilpine; Scopolamine; Pyrilamine; Zolantidine | ||||
Dewey Decimal Classification: | 500 Science > 540 Chemistry & allied sciences 600 Technology > 615 Pharmacy | ||||
Status: | Published | ||||
Refereed: | Yes, this version has been refereed | ||||
Created at the University of Regensburg: | Partially | ||||
Item ID: | 42911 |
Abstract
Both the acetylcholine esterase (AChE) and the histamine H-3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist ...

Abstract
Both the acetylcholine esterase (AChE) and the histamine H-3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist 7-(3-(piperidin-1-yl)propoxy)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (UW-MD-72) shows excellent selectivity profiles over the AChE's isoenzyme butyrylcholinesterase (BChE) as well as high and balanced in-vitro affinities at both AChE and hH(3)R with IC50 of 5.4 mu M on hAChE and hH(3)R antagonism with K-i of 2.54 mu M, respectively. In the current study, the effects of UW-MD-72 (1.25, 2.5, and 5 mg/kg, i.p.) on memory deficits induced by the muscarinic cholinergic antagonist scopolamine (SCO) and the non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine (DIZ) were investigated in a step-through type passive avoidance paradigm in adult male rats applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. The results observed show that SCO (2 mg/kg, i.p.) and DIZ (0.1 mg/kg, i.p.) significantly impaired learning and memory in rats. However, acute systemic administration of UW-MD-72 significantly ameliorated the SCO- and DIZ-induced amnesic effects. Furthermore, the ameliorating activity of UW-MD-72 (1.25 mg/kg, i.p.) in DIZ-induced amnesia was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10 mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10 mg/kg, i.p.). Moreover, ameliorative effect of UW-MD-72 (1.25 mg/kg, i.p.) in DIZ-induced amnesia was strongly reversed when rats were pretreated with a combination of ZOL (10 mg/kg, i.p.) and SCO (1.0 mg/kg, i.p.), indicating that these memory enhancing effects were, in addition to other neural circuits, observed through histaminergic H2R as well as muscarinic cholinergic neurotransmission. These results demonstrate the ameliorative effects of UW-MD-72 in two in-vivo memory models and provide evidence for the potential of dual-acting AChEI and H3R antagonists to treat cognitive disorders.
Metadata last modified: 02 Dec 2021 09:12