Ammann, Bernd ; Große, Nadine
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | The Journal of Geometric Analysis |
---|
Verlag: | Springer |
---|
Ort der Veröffentlichung: | NEW YORK |
---|
Band: | 26 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 4 |
---|
Seitenbereich: | S. 2842-2882 |
---|
Datum: | 2016 |
---|
Institutionen: | Mathematik > Prof. Dr. Bernd Ammann |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1007/s12220-015-9651-1 | DOI |
|
---|
Stichwörter / Keywords: | SPINORIAL TAU-INVARIANT; SCALAR CURVATURE; DIRAC EIGENVALUE; BOUNDED GEOMETRY; MANIFOLDS; SURGERY; EQUATION; 3-MANIFOLDS; INEQUALITY; OPERATOR; Dirac operator; Yamabe constant; Yamabe invariant; Conformal Hijazi inequality |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 42994 |
---|
Zusammenfassung
In the work of Ammann et al. it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, ...
Zusammenfassung
In the work of Ammann et al. it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, and our investigations lead to an explicit positive lower bound for the spinorial threshold constants.