Abstract
In the work of Ammann et al. it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, ...
Abstract
In the work of Ammann et al. it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, and our investigations lead to an explicit positive lower bound for the spinorial threshold constants.