Bunke, Ulrich ; Nikolaus, Thomas ; Tamme, Georg
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Advances in Mathematics |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 333 |
---|
Seitenbereich: | S. 41-86 |
---|
Datum: | 2018 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.aim.2018.05.027 | DOI |
|
---|
Stichwörter / Keywords: | ALGEBRAIC K-THEORY; INFINITY-CATEGORIES; SPACE; Beilinson regulator; K-theory; Absolute Hodge cohomology; Ring spectra; Motivic homotopy theory |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 46973 |
---|
Zusammenfassung
We prove that the Beilinson regulator, which is a map from K-theory to absolute Hodge cohomology of a smooth variety, admits a refinement to a map of Em-ring spectra in the sense of algebraic topology. To this end we exhibit absolute Hodge cohomology as the cohomology of a commutative differential graded algebra over R. The associated spectrum to this CDGA is the target of the refinement of the ...
Zusammenfassung
We prove that the Beilinson regulator, which is a map from K-theory to absolute Hodge cohomology of a smooth variety, admits a refinement to a map of Em-ring spectra in the sense of algebraic topology. To this end we exhibit absolute Hodge cohomology as the cohomology of a commutative differential graded algebra over R. The associated spectrum to this CDGA is the target of the refinement of the regulator and the usual K-theory spectrum is the source. To prove this result we compute the space of maps from the motivic K-theory spectrum to the motivic spectrum that represents absolute Hodge cohomology using the motivic Snaith theorem. We identify those maps which admit an Em-refinement and prove a uniqueness result for these refinements. (C) 2018 Elsevier Inc. All rights reserved.