Fischler, Stéphane ; Sprang, Johannes ; Zudilin, Wadim
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Comptes Rendus Mathematique |
---|
Verlag: | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
---|
Ort der Veröffentlichung: | ISSY-LES-MOULINEAUX |
---|
Band: | 356 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 7 |
---|
Seitenbereich: | S. 707-711 |
---|
Datum: | 2018 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.crma.2018.05.007 | DOI |
|
---|
Stichwörter / Keywords: | ; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 47057 |
---|
Zusammenfassung
In this note, we announce the following result: at least 2((1-epsilon)log s/log log s) values of the Riemann zeta function at odd integers between 3 and s are irrational, where s is any positive real number and s is large enough in terms of epsilon. This improves on the lower bound 1-epsilon/1+log 2 log s that follows from the Ball-Rivoal theorem. We give the main ideas of the proof, which is ...
Zusammenfassung
In this note, we announce the following result: at least 2((1-epsilon)log s/log log s) values of the Riemann zeta function at odd integers between 3 and s are irrational, where s is any positive real number and s is large enough in terms of epsilon. This improves on the lower bound 1-epsilon/1+log 2 log s that follows from the Ball-Rivoal theorem. We give the main ideas of the proof, which is based on an elimination process between several linear forms in odd zeta values with related coefficients. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.