Zusammenfassung
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole-dipole interaction (DDI) between the two particles, the critical switching current I-c for reversing ...
Zusammenfassung
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole-dipole interaction (DDI) between the two particles, the critical switching current I-c for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The I-c bifurcates at a critical DDI strength, where I-c can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession, reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.