Zusammenfassung
The combination of inelastic electron tunneling spectroscopy (IETS), also used for IET spectrum based on scanning tunneling microscopy with atomic force microscopy (AFM) enables us to measure the vibrational energies of a single molecule along with the force exerted by the tip of a microscope, which deepens our understanding on the interaction between the tip and the molecule on a surface. The ...
Zusammenfassung
The combination of inelastic electron tunneling spectroscopy (IETS), also used for IET spectrum based on scanning tunneling microscopy with atomic force microscopy (AFM) enables us to measure the vibrational energies of a single molecule along with the force exerted by the tip of a microscope, which deepens our understanding on the interaction between the tip and the molecule on a surface. The resolution of IETS is a crucial factor in determining the vibrational energies of a molecule. However, radio frequency (RF) noise from the environment significantly deteriorates the resolution. We introduce an RF noise filtering technique, which enables high resolution IETS while maintaining uncompromised AFM performance, demonstrated by vibrational measurements of a CO molecule on a copper surface. Published under license by AIP Publishing.