Finster, Felix ; Röken, Christian
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Annales Henri Poincaré |
---|
Verlag: | SPRINGER INTERNATIONAL PUBLISHING AG |
---|
Ort der Veröffentlichung: | CHAM |
---|
Band: | 20 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 10 |
---|
Seitenbereich: | S. 3389-3418 |
---|
Datum: | 2019 |
---|
Institutionen: | Mathematik > Prof. Dr. Felix Finster |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1007/s00023-019-00837-9 | DOI |
|
---|
Stichwörter / Keywords: | NONPERTURBATIVE CONSTRUCTION; DIRAC PARTICLES; SPACE-TIMES; SCATTERING; PROJECTOR; STATES; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 48215 |
---|
Zusammenfassung
The structure of the solution space of the Dirac equation in the exterior Schwarzschild geometry is analyzed. Representing the space-time inner product for families of solutions with variable mass parameter in terms of the respective scalar products, a so-called mass decomposition is derived. This mass decomposition consists of a single mass integral involving the fermionic signature operator as ...
Zusammenfassung
The structure of the solution space of the Dirac equation in the exterior Schwarzschild geometry is analyzed. Representing the space-time inner product for families of solutions with variable mass parameter in terms of the respective scalar products, a so-called mass decomposition is derived. This mass decomposition consists of a single mass integral involving the fermionic signature operator as well as a double integral which takes into account the flux of Dirac currents across the event horizon. The spectrum of the fermionic signature operator is computed. The corresponding generalized fermionic projector states are analyzed.