Fischler, Stéphane ; Sprang, Johannes ; Zudilin, Wadim
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Compositio Mathematica |
---|
Verlag: | CAMBRIDGE UNIV PRESS |
---|
Ort der Veröffentlichung: | CAMBRIDGE |
---|
Band: | 155 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 5 |
---|
Seitenbereich: | S. 938-952 |
---|
Datum: | 2019 |
---|
Institutionen: | Mathematik > Prof. Dr. Guido Kings |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1112/S0010437X1900722X | DOI |
|
---|
Stichwörter / Keywords: | NUMBERS ZETA(5); irrationality; zeta values; hypergeometric series |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 48701 |
---|
Zusammenfassung
Building upon ideas of the second and third authors, we prove that at least 2((1-epsilon)(log s)/(log log s)) values of the Riemann zeta function at odd integers between 3 and s are irrational, where epsilon is any positive real number and s is large enough in terms of epsilon. This lower bound is asymptotically larger than any power of log s; it improves on the bound (1 - epsilon)(log s) / (1 + ...
Zusammenfassung
Building upon ideas of the second and third authors, we prove that at least 2((1-epsilon)(log s)/(log log s)) values of the Riemann zeta function at odd integers between 3 and s are irrational, where epsilon is any positive real number and s is large enough in terms of epsilon. This lower bound is asymptotically larger than any power of log s; it improves on the bound (1 - epsilon)(log s) / (1 + log 2) that follows from the Ball-Rivoal theorem. The proof is based on construction of several linear forms in odd zeta values with related coefficients.