Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Functional Analysis |
|---|
| Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
|---|
| Ort der Veröffentlichung: | SAN DIEGO |
|---|
| Band: | 276 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 7 |
|---|
| Seitenbereich: | S. 2103-2155 |
|---|
| Datum: | 2019 |
|---|
| Institutionen: | Mathematik Mathematik > Prof. Dr. Bernd Ammann |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1016/j.jfa.2018.08.014 | DOI |
|
|---|
| Stichwörter / Keywords: | CURVATURE; K-homology; K-theory; Bounded geometry; Poincare duality |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 48852 |
|---|
Zusammenfassung
We revisit Spakula's uniform K-homology, construct the external product for it and use this to deduce homotopy invariance of uniform K-homology. We define uniform K-theory and on manifolds of bounded geometry we give an interpretation of it via vector bundles of bounded geometry. We further construct a cap product with uniform K-homology and prove Poincare duality between uniform K-theory and ...
Zusammenfassung
We revisit Spakula's uniform K-homology, construct the external product for it and use this to deduce homotopy invariance of uniform K-homology. We define uniform K-theory and on manifolds of bounded geometry we give an interpretation of it via vector bundles of bounded geometry. We further construct a cap product with uniform K-homology and prove Poincare duality between uniform K-theory and uniform K-homology on spin(c) manifolds of bounded geometry. (C) 2018 Elsevier Inc. All rights reserved.