Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Functional Analysis |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 276 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 7 |
---|
Seitenbereich: | S. 2103-2155 |
---|
Datum: | 2019 |
---|
Institutionen: | Mathematik Mathematik > Prof. Dr. Bernd Ammann |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.jfa.2018.08.014 | DOI |
|
---|
Stichwörter / Keywords: | CURVATURE; K-homology; K-theory; Bounded geometry; Poincare duality |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 48852 |
---|
Zusammenfassung
We revisit Spakula's uniform K-homology, construct the external product for it and use this to deduce homotopy invariance of uniform K-homology. We define uniform K-theory and on manifolds of bounded geometry we give an interpretation of it via vector bundles of bounded geometry. We further construct a cap product with uniform K-homology and prove Poincare duality between uniform K-theory and ...
Zusammenfassung
We revisit Spakula's uniform K-homology, construct the external product for it and use this to deduce homotopy invariance of uniform K-homology. We define uniform K-theory and on manifolds of bounded geometry we give an interpretation of it via vector bundles of bounded geometry. We further construct a cap product with uniform K-homology and prove Poincare duality between uniform K-theory and uniform K-homology on spin(c) manifolds of bounded geometry. (C) 2018 Elsevier Inc. All rights reserved.