Abels, Helmut ; Garcke, Harald ; Weber, Josef
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Communications on Pure & Applied Analysis |
---|
Verlag: | AMER INST MATHEMATICAL SCIENCES-AIMS |
---|
Ort der Veröffentlichung: | SPRINGFIELD |
---|
Band: | 18 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 195-225 |
---|
Datum: | 2019 |
---|
Institutionen: | Mathematik > Prof. Dr. Helmut Abels Mathematik > Prof. Dr. Harald Garcke |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.3934/cpaa.2019011 | DOI |
|
---|
Stichwörter / Keywords: | COMPUTATION; Two-phase flow; diffuse interface model; variable surface tension; surfactants; global existence; implicit time discretization; Navier-Stokes equations; Cahn-Hilliard equation |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 49234 |
---|
Zusammenfassung
Two-phase flow of two Newtonian incompressible viscous fluids with a soluble surfactant and different densities of the fluids can be modeled within the diffuse interface approach. We consider a Navier-Stokes/Cahn-Hilliard type system coupled to non-linear diffusion equations that describe the diffusion of the surfactant in the bulk phases as well as along the diffuse interface. Moreover, the ...
Zusammenfassung
Two-phase flow of two Newtonian incompressible viscous fluids with a soluble surfactant and different densities of the fluids can be modeled within the diffuse interface approach. We consider a Navier-Stokes/Cahn-Hilliard type system coupled to non-linear diffusion equations that describe the diffusion of the surfactant in the bulk phases as well as along the diffuse interface. Moreover, the surfactant concentration influences the free energy and therefore the surface tension of the diffuse interface. For this system existence of weak solutions globally in time for general initial data is proved. To this end a two-step approximation is used that consists of a regularization of the time continuous system in the first and a time-discretization in the second step.