Startseite UR

Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study

Pryss, Rüdiger ; Schlee, Winfried ; Hoppenstedt, Burkhard ; Reichert, Manfred ; Spiliopoulou, Myra ; Langguth, Berthold ; Breitmayer, Marius ; Probst, Thomas



Zusammenfassung

Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner