Zusammenfassung
The fat body, a major metabolic hub in insects, is involved in many functions, e.g. energy storage, nutrient sensing and immune response. In social insects, fat appears to play an additional role in division of labour between egg layers and workers, which specialize in nonreproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in ...
Zusammenfassung
The fat body, a major metabolic hub in insects, is involved in many functions, e.g. energy storage, nutrient sensing and immune response. In social insects, fat appears to play an additional role in division of labour between egg layers and workers, which specialize in nonreproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in fat content have been associated with the transition from inside to outside work or reproductive activities. However, most studies have been correlative and we still need to unravel the causal interrelationships between fat content and division of both reproductive and nonreproductive labour. Clonal ants, e.g. Platythyrea punctata, are ideal models for studying task partitioning without confounding variation in genotype and morphology. In this study, we examined the range of variation and flexibility of fat content throughout the lifespan of workers, the threshold of corpulence associated with foraging or reproduction and whether low fat content is a cause rather than a consequence of the transition to foraging. We found that lipid stores change with division of labour from corpulent to lean and, in reverted nurses, back to corpulent. In addition, our data show the presence of fat content thresholds that trigger the onset of foraging or egg-laying behaviour. Our study supports the view that mechanisms that regulate reproduction and foraging in solitary insects, in particular the nutritional status of individuals, have been co-opted to regulate division of labour in colonies of social insects.