Heuer, Nicolaus ; Löh, Clara
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Inventiones mathematicae |
|---|
| Verlag: | SPRINGER HEIDELBERG |
|---|
| Ort der Veröffentlichung: | HEIDELBERG |
|---|
| Band: | 223 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
|---|
| Seitenbereich: | S. 103-148 |
|---|
| Datum: | 2021 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Clara Löh |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1007/s00222-020-00989-0 | DOI |
|
|---|
| Stichwörter / Keywords: | STABLE COMMUTATOR LENGTH; MAPPING CLASS-GROUPS; BOUNDED COHOMOLOGY; GROMOV INVARIANT; FREE-PRODUCTS; SCL; SUBGROUPS; HOMOLOGY; GENUS; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 55644 |
|---|
Zusammenfassung
New constructions in group homology allow us to manufacture high-dimensional manifolds with controlled simplicial volume. We prove that for every dimension bigger than 3 the set of simplicial volumes of orientable closed connected manifolds is dense in R->= 0. In dimension 4 we prove that every non-negative rational number is the simplicial volume of some orientable closed connected 4-manifold. ...
Zusammenfassung
New constructions in group homology allow us to manufacture high-dimensional manifolds with controlled simplicial volume. We prove that for every dimension bigger than 3 the set of simplicial volumes of orientable closed connected manifolds is dense in R->= 0. In dimension 4 we prove that every non-negative rational number is the simplicial volume of some orientable closed connected 4-manifold. Our group theoretic results relate stable commutator length to the l(1)-semi-norm of certain singular homology classes in degree 2. The output of these results is translated into manifold constructions using cross-products and Thom realisation.