Abels, Helmut ; Marquardt, Andreas
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Discrete and Continuous Dynamical Systems - Series S |
|---|
| Verlag: | AMER INST MATHEMATICAL SCIENCES-AIMS |
|---|
| Ort der Veröffentlichung: | SPRINGFIELD |
|---|
| Band: | 14 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 11 |
|---|
| Seitenbereich: | S. 3973 |
|---|
| Datum: | 2021 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Helmut Abels |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.3934/dcdss.2020467 | DOI |
|
|---|
| Stichwörter / Keywords: | Two-phase flow; sharp interface limit; Cahn-Hilliard equation; free boundary problems; Mullins-Sekerka equation |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 55687 |
|---|
Zusammenfassung
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable ...
Zusammenfassung
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable L-2-Sobolev spaces with the aid of a maximal regularity result for non-autonomous abstract linear evolution equations.