Abels, Helmut ; Marquardt, Andreas
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Discrete and Continuous Dynamical Systems - Series S |
---|
Verlag: | AMER INST MATHEMATICAL SCIENCES-AIMS |
---|
Ort der Veröffentlichung: | SPRINGFIELD |
---|
Band: | 14 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 11 |
---|
Seitenbereich: | S. 3973 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik > Prof. Dr. Helmut Abels |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.3934/dcdss.2020467 | DOI |
|
---|
Stichwörter / Keywords: | Two-phase flow; sharp interface limit; Cahn-Hilliard equation; free boundary problems; Mullins-Sekerka equation |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 55687 |
---|
Zusammenfassung
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable ...
Zusammenfassung
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable L-2-Sobolev spaces with the aid of a maximal regularity result for non-autonomous abstract linear evolution equations.