Fauser, Daniel 
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Forum Mathematicum |
|---|
| Verlag: | WALTER DE GRUYTER GMBH |
|---|
| Ort der Veröffentlichung: | BERLIN |
|---|
| Band: | 33 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
|---|
| Seitenbereich: | S. 773-788 |
|---|
| Datum: | 2021 |
|---|
| Institutionen: | Mathematik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1515/forum-2020-0079 | DOI |
|
|---|
| Stichwörter / Keywords: | RANK GRADIENT; COST; Simplicial volume; S-1-action; uniform boundary condition |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 55692 |
|---|
Zusammenfassung
The simplicial volume of oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. In the present work, we prove a version of this result for the integral foliated simplicial volume of aspherical manifolds: The integral foliated simplicial volume of aspherical oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. Our ...
Zusammenfassung
The simplicial volume of oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. In the present work, we prove a version of this result for the integral foliated simplicial volume of aspherical manifolds: The integral foliated simplicial volume of aspherical oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. Our proof uses the geometric construction of Yano's proof for ordinary simplicial volume as well as the parametrized uniform boundary condition for S-1.