Fauser, Daniel
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Forum Mathematicum |
---|
Verlag: | WALTER DE GRUYTER GMBH |
---|
Ort der Veröffentlichung: | BERLIN |
---|
Band: | 33 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
---|
Seitenbereich: | S. 773-788 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1515/forum-2020-0079 | DOI |
|
---|
Stichwörter / Keywords: | RANK GRADIENT; COST; Simplicial volume; S-1-action; uniform boundary condition |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 55692 |
---|
Zusammenfassung
The simplicial volume of oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. In the present work, we prove a version of this result for the integral foliated simplicial volume of aspherical manifolds: The integral foliated simplicial volume of aspherical oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. Our ...
Zusammenfassung
The simplicial volume of oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. In the present work, we prove a version of this result for the integral foliated simplicial volume of aspherical manifolds: The integral foliated simplicial volume of aspherical oriented closed connected smooth manifolds that admit a non-trivial smooth S-1-action vanishes. Our proof uses the geometric construction of Yano's proof for ordinary simplicial volume as well as the parametrized uniform boundary condition for S-1.