Finster, Felix
; Kamran, Niky ; Oppio, Marco
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Journal of Differential Equations |
|---|
| Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
|---|
| Ort der Veröffentlichung: | SAN DIEGO |
|---|
| Band: | 293 |
|---|
| Seitenbereich: | S. 115-187 |
|---|
| Datum: | 2021 |
|---|
| Institutionen: | Mathematik > Prof. Dr. Felix Finster |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1016/j.jde.2021.05.025 | DOI |
|
|---|
| Stichwörter / Keywords: | VARIATIONAL-PRINCIPLES; EXISTENCE |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 55800 |
|---|
Zusammenfassung
The dynamics of spinorial wave functions in a causal fermion system is studied. A so-called dynamical wave equation is derived. Its solutions form a Hilbert space, whose scalar product is represented by a conserved surface layer integral. We prove under general assumptions that the initial value problem for the dynamical wave equation admits a unique global solution. Causal Green's operators are ...
Zusammenfassung
The dynamics of spinorial wave functions in a causal fermion system is studied. A so-called dynamical wave equation is derived. Its solutions form a Hilbert space, whose scalar product is represented by a conserved surface layer integral. We prove under general assumptions that the initial value problem for the dynamical wave equation admits a unique global solution. Causal Green's operators are constructed and analyzed. Our findings are illustrated in the example of the regularized Minkowski vacuum. (C) 2021 Elsevier Inc. All rights reserved.