Finster, Felix ; Kamran, Niky ; Oppio, Marco
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Differential Equations |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 293 |
---|
Seitenbereich: | S. 115-187 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik > Prof. Dr. Felix Finster |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.jde.2021.05.025 | DOI |
|
---|
Stichwörter / Keywords: | VARIATIONAL-PRINCIPLES; EXISTENCE |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 55800 |
---|
Zusammenfassung
The dynamics of spinorial wave functions in a causal fermion system is studied. A so-called dynamical wave equation is derived. Its solutions form a Hilbert space, whose scalar product is represented by a conserved surface layer integral. We prove under general assumptions that the initial value problem for the dynamical wave equation admits a unique global solution. Causal Green's operators are ...
Zusammenfassung
The dynamics of spinorial wave functions in a causal fermion system is studied. A so-called dynamical wave equation is derived. Its solutions form a Hilbert space, whose scalar product is represented by a conserved surface layer integral. We prove under general assumptions that the initial value problem for the dynamical wave equation admits a unique global solution. Causal Green's operators are constructed and analyzed. Our findings are illustrated in the example of the regularized Minkowski vacuum. (C) 2021 Elsevier Inc. All rights reserved.