Matioc, Bogdan–Vasile ; Prokert, Georg
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics |
---|
Verlag: | CAMBRIDGE UNIV PRESS |
---|
Ort der Veröffentlichung: | CAMBRIDGE |
---|
Band: | 151 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 6 |
---|
Seitenbereich: | S. 1815-1845 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1017/prm.2020.82 | DOI |
|
---|
Stichwörter / Keywords: | MUSKAT PROBLEM; INTERFACE; REGULARITY; Stokes problem; two-phase; singular integrals; contour integral formulation |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 55803 |
---|
Zusammenfassung
We study the two-phase Stokes flow driven by surface tension with two fluids of equal viscosity, separated by an asymptotically flat interface with graph geometry. The flow is assumed to be two-dimensional with the fluids filling the entire space. We prove well-posedness and parabolic smoothing in Sobolev spaces up to critical regularity. The main technical tools are an analysis of nonlinear ...
Zusammenfassung
We study the two-phase Stokes flow driven by surface tension with two fluids of equal viscosity, separated by an asymptotically flat interface with graph geometry. The flow is assumed to be two-dimensional with the fluids filling the entire space. We prove well-posedness and parabolic smoothing in Sobolev spaces up to critical regularity. The main technical tools are an analysis of nonlinear singular integral operators arising from the hydrodynamic single-layer potential and abstract results on nonlinear parabolic evolution equations.