Abstract
It has remained uncertain whether the mechanisms of visual perceptual learning (VPL)(1-4) remain stable across the lifespan or undergo developmental changes. This uncertainty largely originates from missing results about the mechanisms of VPL in healthy children. We here investigated the mechanisms of task-irrelevant VPL in healthy elementary school age children (7-10 years old) and compared ...
Abstract
It has remained uncertain whether the mechanisms of visual perceptual learning (VPL)(1-4) remain stable across the lifespan or undergo developmental changes. This uncertainty largely originates from missing results about the mechanisms of VPL in healthy children. We here investigated the mechanisms of task-irrelevant VPL in healthy elementary school age children (7-10 years old) and compared their results to healthy young adults (18-31 years old). Subjects performed a rapid-serial-visual-presentation (RSVP) task at central fixation over the course of several daily sessions while coherent motion was merely exposed as a task-irrelevant feature in the visual periphery either at threshold or suprathreshold levels for coherent motion detection. As a result of this repeated exposure, children and adults both showed enhanced discrimination performance for the threshold task-irrelevant feature as in previous studies with adults.(5-8) However, adults demonstrated a decreased performance for the suprathreshold task-irrelevant feature whereas children increased performance. One possible explanation for this difference is that children cannot effectively suppress salient task-irrelevant features because of weaker selective attention ability compared to that of adults.(9-11) However, our results revealed to the contrary that children with stronger selective attention ability, as measured by the useful field of view (UFOV) test, showed greater increases in performance for the suprathreshold task-irrelevant feature. Together, these results suggest that the mechanisms of VPL change dramatically from childhood to adulthood due to a change in the way learners handle salient task-irrelevant features.