Haas, Johann ; Lüders, Morten
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Journal of Number Theory |
---|
Verlag: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
---|
Ort der Veröffentlichung: | SAN DIEGO |
---|
Band: | 220 |
---|
Seitenbereich: | S. 235-265 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.jnt.2020.06.011 | DOI |
|
---|
Stichwörter / Keywords: | CLASS FIELD-THEORY; MOTIVIC COHOMOLOGY; RESTRICTION ISOMORPHISM; K-THEORY; HOMOLOGY; DUALITY; RINGS; Chow groups; Kato conjectures; Class field theory; Local to global |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 56169 |
---|
Zusammenfassung
We study a local to global principle for certain higher zero cycles over global fields. We thereby verify a conjecture of Colliot-Thelene for these cycles. Our main tool are the Kato conjectures proved by Jannsen, Kerz and Saito. Our approach also allows to reprove the ramified global class field theory of Kato and Saito. Finally, we apply the Kato conjectures to study the p-adic cycle class map ...
Zusammenfassung
We study a local to global principle for certain higher zero cycles over global fields. We thereby verify a conjecture of Colliot-Thelene for these cycles. Our main tool are the Kato conjectures proved by Jannsen, Kerz and Saito. Our approach also allows to reprove the ramified global class field theory of Kato and Saito. Finally, we apply the Kato conjectures to study the p-adic cycle class map over henselian discrete valuation rings of mixed characteristic and to deduce finiteness theorems for arithmetic schemes in low degree. (c) 2020 Elsevier Inc. All rights reserved.