Startseite UR

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

Bravo, Laura ; Nepogodiev, Dmitri ; Glasbey, James C. ; Li, Elizabeth ; Simoes, Joana F. F. ; Kamarajah, Sivesh K. ; Picciochi, Maria ; Abbott, Tom E. F. ; Ademuyiwa, Adesoji O. ; Arnaud, Alexis P. ; Agarwal, Arnav ; Brar, Amanpreet ; Elhadi, Muhammed ; Mazingi, Dennis ; Cardoso, Victor Roth ; Lawday, Samuel ; Omar, Omar M. ; Sayyed, Raza ; de la Madina, Antonio Ramos ; Slater, Luke ; Venn, Mary ; Gkoutos, Georgios ; Bhangu, Aneel



Zusammenfassung

To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner