Gualdi, Roberto ; Martínez, César
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Annales de l'Institut Fourier |
---|
Verlag: | ANNALES INST FOURIER |
---|
Ort der Veröffentlichung: | ST MARTIN D HERES CEDEX |
---|
Band: | 72 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 4 |
---|
Seitenbereich: | S. 1329-1377 |
---|
Datum: | 2022 |
---|
Institutionen: | Mathematik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.5802/aif.3500 | DOI |
|
---|
Stichwörter / Keywords: | ARAKELOV GEOMETRY; LINE BUNDLES; SMALL HEIGHT; SMALL POINTS; Equidistribution of cycles; Arakelov geometry; Heights; Essential minimum |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 56956 |
---|
Zusammenfassung
The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. In this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove ...
Zusammenfassung
The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. In this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove equidistribution of generic and small effective cycles. The latter generalizes the previous higher dimensional equidistribution theorems by considering cycles and by allowing more flexibility on the arithmetic datum.